## MATH 2068: Honours Mathematical Analysis II: Home Examination

 7:00 pm, 29 April 2022
## Important Notice:

\& The answer paper must be submitted before 30 April 2022 at 7:00 pm.
© The answer paper MUST BE sent to the CU Blackboard.
The answer paper must include your name and student ID.

## Answer ALL Questions

1. ( 25 points)
(i) Does the series $f(x):=\sum_{k=1}^{\infty} k e^{-k x}$ converge uniformly on its convergence domain $D:=\{x \in \mathbb{R}: f(x)$ is convergrent $\}$ ? In addition, is $f$ continuous on $D$ ?
(ii) Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be two sequences of non-negative numbers. Prove or disprove the following statements:
(a) If $\sum a_{n}$ is convergent and $\lim n a_{n}$ exists, then $\lim n a_{n}=0$.
(b) Assume that $b_{n}>0$ for all $n$ and $\lim \frac{a_{n}}{b_{n}}=0$. If $\sum b_{n}$ is convergent then so is $\sum a_{n}$.
(iii) Let $\left(x_{n}\right)$ and $\left(y_{n}\right)$ be the sequences of numbers. Assume that we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=1}^{\infty}\left|y_{n} x_{k}\right|=0 \tag{1}
\end{equation*}
$$

Show that $\lim _{k \rightarrow \infty} \sup \left\{\left|y_{n} x_{k}\right|: n=1,2, \ldots\right\}=0$.

## 2. (25 points)

Let $h$ be a non-negative real-valued function defined on $\mathbb{R}$. Suppose that $h$ is Riemann integrable over every closed and bounded interval. For each pair of numbers $a$ and $b$ set $\tau(a, a)=0$ and if $a \neq b$, set

$$
\begin{equation*}
\tau(a, b):=\left|\int_{a}^{b} h(t) d t\right| . \tag{2}
\end{equation*}
$$

(i) Let $a$ and $b$ be a pair of numbers with $a<b$. Show that for any $t \in[0,1]$, there is a real number $x_{t}$ such that $\tau\left(a, x_{t}\right)=t \tau(a, b)$ and $\tau\left(x_{t}, b\right)=(1-t) \tau(a, b)$.
(ii) Let $f$ a bounded function defined on $\mathbb{R}$ satisfying the condition: if for each $\varepsilon>0$, there is $\delta>0$ such that $|f(x)-f(y)|<\varepsilon$ whenever $x, y \in \mathbb{R}$ with $\tau(x, y)<\delta$.
Show that for each $L>0$, there is $C>0$ such that $\tau(f(x), f(y)) \leq C \tau(x, y)$ as $\tau(x, y)>L$.
(iii) Now let $f$ be a bounded uniform continuous on $\mathbb{R}$, that is $h(t) \equiv 1$ in $\operatorname{Eq}(2)$. Prove or disprove the following statement:
If $f$ satisfies the condition: for each $L>0$, there is $C>0$ such that $|f(x)-f(y)| \leq$ $C|x-y|$ as $|x-y|>L$, then $f$ is a Lipschitz function, that is there is $C>0$ such that $|f(x)-f(y)| \leq C|x-y|$ for all $x, y \in \mathbb{R}$.

